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Cogging

* Defined: adjusting the revolution frequency of
bunched beam i1n a synchrotron to correspond to some
external frequency

« Examples:

» Centering collisions in an IR
e ¢.g. Tevatron, RHIC

» RF synchronous transfer between rings
» Phaselock

» Synchronization with external beam
» Booster Cogging



“Phaselock refers to experiments
on the interconnectedness of the
universe, where changes in one
part, create instantaneous changes

in the rest of the universe.”
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Example: Booster Phaselock

« Match fg= f;, 0 = by * Control beam’s radial position
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Need for a Notch

Extraction kicker has risetime of ~ 40 ns 84 RF buckets
around circumference

» Only ~ 10 ns between bunches
Beam lost at 8 GeV during extraction

Instead, beam is removed at 400 MeV

» Reduces energy lost 20x

Notch implemented for start of Run II and
MiniBooNE

> Reduces extraction loss 10x

With a single batch, Booster determines
beam position in the MI



Multi-Batch Operation

Two beams must be accelerated toter in the Main jector
» Extracted to PBar & NuMI

Requires “multi-batch™ operation
m the Booster

Y2 Batch
(empty)




Main Injector Booster
Circulating Beam - CO g glng

e Extraction on notch
» Notch must be coincident with kicker pulse
» Booster must be aligned with MI beam
 However:
» Accelerators are not synchronized

* Cogging aligns the azimuthal position of

the notch with beam in the MI



Do 1t like phaselock?

Revolution frequency is 1/84™ of
RF frequency

» 84x the distance to be moved

» Needs longer time or larger bump

Booster has no flattop
Bump can only be slightly larger

—Need to cog during acceleration
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Tranistion Phase Jump
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Cogging Proof of Principle

Tek Run: 10.0k5/s sample
I

T
]

1A 320mV

| 84.buckets. =~ .
(onie turn) °

{@: 1.78 V

| error signal

Pellico & Webber

Ch 2 RIRY
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Too Much Feedback

Tek Run: 10.0KS/s sample
I

~GE 100V WM5.00ms Ch4 7 1.70V 28 Mar 1998
13:34:50



The Cogging System

Controls:

» Booster Radial Position

» Notching

> Extraction . A
MI LLRF constraints NS

MI-8 LINE
. . - ~,
» Frequency maintained %7 ‘
~/ pa

» Marker maintained

» Takes resets from the Booster
GMPS feedforward

Beam Information
» MDAT & Booster Beam Gate
Triggering
» BDOT signal v PR ! _ rmoow_
» TCLK timing ! &7 VROV




Cogging Electronics

 Use the “Generic” Booster Board * Altera FPGA for fast counting
> Also for GMPS, BLMs, etc. « DSP for calculations
 Digital and analog inputs/outputs
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Booster Revolution

Booster RF

Marker (Notch)

Main Injector
Revolution. Marker

Measurements

Monitor Notch position throughout « Start counting on Main Injector

the cycle revolution marker (every 11 us)

Use Main Injector RF as a standard « Stop Counting on Booster revolution
clock marker (every 1.6-2.2 us)

Booster RF frequency varies with » Makes a table of positions (tripplan)
energy

> 38 = 53 MHz
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« RF buckets slip at a rate f,;; — f; <15 MHz

» Notch wraps around the Booster many times

o Extraction with one batch
> Count RF buckets to make a marker
> Extract on marker

» Reset Main Injector

* With several batches

» Clean extraction is possible if total slippage

is exactly the same cycle-to-cycle

» Requires 1 in 1,000,000 consistency...



Stored Array

— LTI

Relative Slippage =
pp g o LT LTI |
Counter (in FPGA)
QAA
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» Use a previous cycle as a Pl (B % (Comeat )

baseline :
Raw position < Relative to baseline
20 L L BB L B L IR L
20 ]
150 1

70 . ~ 3 turns
/g [510] — gmo —
2 -
‘@ 40 . =
o W
S 50 . 2 o
. & y

20 - i

—50 _ VvV 4
10 a ,
i | ]
o o I I5 I 10 I I15I - ‘2‘0‘ ‘2‘5‘ H‘ ‘ ‘35 —1ee I I1‘O‘ - I1|5I - ‘2|DI - ‘2‘5‘ - I3|DI - ‘35
Time (ms) Time (ms)

Shared




Sources of Slippage

Any perturbation to RF will cause slippage » Several possible errors shown below:
t ' » Timing: 1 ps = 15 bucket slip
Shppage (t) = J. dt Af (t ) >  Magnet Frequency: 1 mHz = 6 bucket slip
0 RF »  Minimum Magnet current (0p;): 1/10,000

: . = 10 bucket slip
Over 33 ms Af = 30 Hz gives 1 bucket slippage > Maximum Magnet current (8p): 1/10,000
f=37-53 MHZ — part per million problem — 7 bucket slip ° ’
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Timing Errors

® TCLK trlgger IS predlcted from the BdOt Of the . ° MI markers come at arbitrary times Wrt

previous cycles trigger

» Needs to occur few ms before the minimum

*  Small variation in 15 Hz frequency can lead to Leads to a timing error of as much as 11 ps

LS erTors | » Solution = Generate an internal marker

synchronized to the cogging start

Current Minimum = Cogging Start

Main Injector
Revolution Marker

Bdot Jk l— J\
Fix: trigger data-taking on magnet K J\\_ Jk
minimum instead of clock |
)\ )\ Internal Marker ,JL
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GMPS Regulation

Pulsed devices drag line current

down * Apply feedforward

» Particularly, RF & bias supplies . GMPS i
Lower line current reduces power correction to Inputs

input to GMPS
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* Also need MI to maintain reference RF frequency
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Slippage (Buckets)

Predictive Notching

* Delay creation of the notch 5 ms
» Use information of that period
» Make notch anticipating further slippage.

w/0 correction and w/ correction
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Radially Induced
Slippage

 Induced slippage scales with radial offset
» Rates of ~ 1 kHz/mm
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Proportional
Feedback

Proportional Feedback i

* Notch using prediction
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« Radial Feedback late in the cycle :
° Ar — k . AS Radlal Offset :
|
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|

» Exponential damping
» k= 0.2 mm / bucket
» e-folding time = 10 ms
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Higher Gain

Causes beam loss

Y= B:CHGA Elz
E:RPOS fif il

. 3g39 L8158

WAIT FOR EMENT Seconds  Trig = EWEHNT 17 engineering units



Sustained (Flat) Feedback

» Flat & proportional feedbacks
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» Small error goes to proportional feedback

» Larger errors go to a large constant value of
feedback

Gigher Gain

Stay there until error is small
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Final Cogging Algoritm

* Notch delayed, and placed in anticipation of slippage Transition

» Pre-transition bump

» Uses a prediction algorithm

» Reduces post-trans. cogging necessary
» Flat feedback is the same as above

» Proportional feedback is doubled
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Figure of Merit: Extraction Losses

» Cogging reduces extraction losses substantially

» 80-90%, depending on conditions

* Occasional misses caused by phaselock or small timing errors

» Override reduces phaselock losses by pushing error into MI

* Overall — running such that cogging losses rarely limit Booster throughput

NuMI Booster [Cycles




Cogging 1in Balance

Hardware running stably

* Cogging effects:

> Later notch results in more loss

» Radial motion
* Before trans: £ 1(2) mm
» After trans: £ 2(4) mm

» GMPS must be controlled
» BDOT signal is vital
> Phaselock interferes

> MI is more constrained

» Very few glitches
» Extraction losses reduced 80-90%

Only method for multibatch
» Adequate for today’s running

In the future:

>

>

>
>

Only a few tweaks in cogging algorithms
are possible

* Maybe inputs to other ramped systems

Higher intensity beam might require
smaller range of movement

Phaselock can be redesigned

Faster kickers?

> ...
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Summary: Beam Delivered

* Booster cogging on multibatch cycles for slip-stacking and NuMI

» Sources of variation were identified, and eliminated where possible

» System to enforce synch by feedback (feedforward)

» System made operational ~ 1 yr ago

* Over 30,000,000 cogged cycles

» Peak proton power to NuMI has approached 300 kW, achieving 10%° protons
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